On the Uniform Equidistribution of Closed Horospheres in Hyperbolic Manifolds
نویسنده
چکیده
We prove asymptotic equidistribution results for pieces of large closed horospheres in cofinite hyperbolic manifolds of arbitrary dimension. This extends earlier results by Hejhal [10] and Strömbergsson [34] in dimension 2. Our proofs use spectral methods, and lead to precise estimates on the rate of convergence to equidistribution.
منابع مشابه
Closed Geodesics and Holonomies for Kleinian Manifolds
For a rank one Lie group G and a Zariski dense and geometrically finite subgroup Γ of G, we establish the joint equidistribution of closed geodesics and their holonomy classes for the associated locally symmetric space. Our result is given in a quantitative form for geometrically finite real hyperbolic manifolds whose critical exponents are big enough. In the case when G = PSL2(C), our results ...
متن کاملEquidistribution of Primitive Rational Points on Expanding Horospheres
We confirm a conjecture of J. Marklof regarding the limiting distribution of certain sparse collections of points on expanding horospheres. These collections are obtained by intersecting the expanded horosphere with a certain manifold of complementary dimension and turns out to be of arithmetic nature. This result is then used along the lines suggested by J. Marklof to give an analogue of a res...
متن کاملA Free Boundary Isoperimetric Problem in the Hyperbolic Space between Parallel Horospheres
In this work we investigate the following isoperimetric problem: to find the regions of prescribed volume with minimal boundary area between two parallel horospheres in hyperbolic 3-space (the area of the part of the boundary contained in the horospheres is not included). We reduce the problem to the study of rotationally invariant regions and obtain the possible isoperimetric solutions by stud...
متن کاملMean-value property on manifolds with minimal horospheres
Let (M, g) be a non-compact and complete Riemannian manifold with minimal horospheres and infinite injectivity radius. We prove that bounded functions on (M, g) satisfying the mean-value property are constant. We extend thus a result of the authors in [6] where they proved a similar result for bounded harmonic functions on harmonic manifolds with minimal horospheres. MSC 2000: 53C21 , 53C25.
متن کاملNon-simple Geodesics in Hyperbolic 3-manifolds
Chinburg and Reid have recently constructed examples of hyperbolic 3manifolds in which every closed geodesic is simple. These examples are constructed in a highly non-generic way and it is of interest to understand in the general case the geometry of and structure of the set of closed geodesics in hyperbolic 3-manifolds. For hyperbolic 3-manifolds which contain an immersed totally geodesic surf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008